If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-20y-96=0
a = 4; b = -20; c = -96;
Δ = b2-4ac
Δ = -202-4·4·(-96)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-44}{2*4}=\frac{-24}{8} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+44}{2*4}=\frac{64}{8} =8 $
| (2y-5)^2=121 | | X+0.03x=1500 | | (x)/(0.1-x)=4.365 | | (x)/(0.1-x)=0.17378 | | 6x+12=3x+63∘ | | 5x-(10x-3)=-17 | | 2a+15=3a-25 | | 15+3.7m=12.84+2.5m | | 72+3x=x | | 2=5p-11 | | 3h^2=30 | | 2/p=21 | | √9x+√67=x+5 | | 5y+8-9y=27 | | √9x+67=x+5 | | 2(x-3)+3(4-x)5=5x | | 4x+24(0)=16 | | 4(4-6y)+24y=16 | | 3x-(5x-7)=6 | | x-5-13=10 | | x-5-13=-10 | | 15*a=60 | | 7j=-10 | | 3x+73-7=180 | | 6x+33=9-2x | | 1.4=5/2e=3/15e-0.8 | | 1.4=52e−0.8 | | t=-16t^2+70t+6 | | 9n+68=7n−2(n−2) | | 55=b11/2 | | 20.50x+175+234=1024 | | 0.1m+0.008=0.06m+0.172 |